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Objectives
Middleware Caching optimizations
Application oriented benchmark kernels
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Typical Software Layers for I/O in HEC
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pnetCDFHDF5

MPI-IO

Client-side file system

Server-side file system

Storage system

User application

Collectives, independents
I/O hints: access style (read_once, write_mostly, sequential, random, …), 
collective buffering, chunking, striping

Open mode (O_RDONLY, O_WRONLY, O_SYNC), file status, locking, 
flushing, cache invalidation
Machine dependent: data shipping, sparse access, double buffering

Access base on : file blocks, objects Scheduling, aggregation

Read-ahead, write-behind, metadata management, file striping, security, 
redundancy

Data types (byte-alignment), data structures (flexible dimensionality), 
hierarchical data model

Access patterns: shared files, individual files, data partitioning, check-
pointing, data structures, inter-data relationship

application-aware caching, pre-fetching, file grouping, “vector 
of bytes”, flexible caching control, object-based data 
alignment, memory-file layout mapping, more control over 
hardware, Shared file descriptors, 

Group locks, flexible locking control, scalable metadata 
management, zero-copying, QoS, Shared file descriptors, 

Active storage: data filtering,object-based/hierarchical 
storage management, indexing, mining, power-management

Caching, fault tolerance, read-ahead, write-behind, I/O load 
balance, wide-area, heterogeneous FS support, thread-safe
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Middleware Caching: Direct Access 
Cache System (DAChe)

Main Idea: Runtime Cache in user 
space to capture small, irregular 
accesses
Portable
4 main subsystems

I/O interface and protocol
Cache Management
Look-up management
Locking Subsystem

DAChe InterfaceDAChe Interface

Cache MgmtCache Mgmt LookLook--upup LockingLocking

ApplicationApplication
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Example Design & Implementation
Global cache metadata management

A file is logically divided into blocks
Metadata of blocks are distributed across all MPI clients
Block-based file locking is used for consistency control

Local cache page management
At most one copy of file data can be cached at any time
Handling local/remote requests to locally cached data
Page eviction is based on local reference entirely
Page migration is triggered by global metadata reference
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Illustrative Performance Evaluation
Platforms

Tungsten, a Linux cluster @ NCSA
Lustre parallel file system

Mercury, an IBM Linux cluster @ NCSA
GPFS parallel file system

MPICH
Caching added at ADIO layer
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BTIO

Block tri-diagonal array partitioning
writes followed by reads
I/O amount: 

Class B (1023) is 1.6 GB
Class C (1623) is 6.5 GB

P0,0 P0,1P0,2

P1,0 P1,1P1,2

P2,0 P2,1P2,2

P2,0

Local array is in 4D

P2,0

P2,0File view
BTIO: 102x102x102 on GPFS
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BTIO: 102x102x102 on Lustre
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BTIO: 162x162x162 on Lustre
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Aligning +Caching Illustration
BTIO:102x102x102 on Lustre
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